Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

Q is empty.

We have applied [15,7] to switch to innermost. The TRS R 1 is

id(s(x)) → s(id(x))
id(0) → 0

The TRS R 2 is

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)

The signature Sigma is {f}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(s(s(s(s(s(s(s(s(x)))))))), y, y) → ID(s(s(s(s(s(s(s(s(x)))))))))
ID(s(x)) → ID(x)
F(s(s(s(s(s(s(s(s(x)))))))), y, y) → F(id(s(s(s(s(s(s(s(s(x))))))))), y, y)

The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

F(s(s(s(s(s(s(s(s(x)))))))), y, y) → ID(s(s(s(s(s(s(s(s(x)))))))))
ID(s(x)) → ID(x)
F(s(s(s(s(s(s(s(s(x)))))))), y, y) → F(id(s(s(s(s(s(s(s(s(x))))))))), y, y)

The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(s(s(s(s(s(s(s(s(x)))))))), y, y) → ID(s(s(s(s(s(s(s(s(x)))))))))
F(s(s(s(s(s(s(s(s(x)))))))), y, y) → F(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
ID(s(x)) → ID(x)

The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ID(s(x)) → ID(x)

The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ID(s(x)) → ID(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ID(x1)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

F(s(s(s(s(s(s(s(s(x)))))))), y, y) → F(id(s(s(s(s(s(s(s(s(x))))))))), y, y)

The TRS R consists of the following rules:

f(s(s(s(s(s(s(s(s(x)))))))), y, y) → f(id(s(s(s(s(s(s(s(s(x))))))))), y, y)
id(s(x)) → s(id(x))
id(0) → 0

The set Q consists of the following terms:

f(s(s(s(s(s(s(s(s(x0)))))))), x1, x1)
id(s(x0))
id(0)

We have to consider all minimal (P,Q,R)-chains.